
DORADD: Deterministic Parallel Execution in the Era
of Microsecond-Scale Computing
Zhengqing Liu

Imperial College London
scofield.liu@imperial.ac.uk

Musa Unal
EPFL

musa.unal@epfl.ch

Matthew J. Parkinson
Azure Research

mattpark@microsoft.com

Marios Kogias
Imperial College London
m.kogias@imperial.ac.uk

Abstract
Deterministic parallelism is a key building block for dis-
tributed and fault-tolerant systems that offers substantial
performance benefits while guaranteeing determinism. By
studying existing deterministically parallel systems (DPS),
we identify certain design pitfalls, such as batched execution
and inefficient runtime synchronization, that preclude them
from meeting the demands of 𝜇𝑠-scale and high-throughput
distributed systems deployed in modern datacenters.

We present DORADD, a deterministically parallel runtime
with low latency and high throughput, designed for modern
datacenter services. DORADD introduces a hybrid schedul-
ing scheme that effectively decouples request dispatching
from execution. It employs a single dispatcher to determinis-
tically construct a dynamic dependency graph of incoming
requests and worker pools that can independently execute re-
quests in a work-conserving and synchronization-free man-
ner. Furthermore, DORADD overcomes the single-dispatcher
throughput bottleneck based on core pipelining.
We use DORADD to build an in-memory database and

compare it with Caracal, the current state-of-the-art deter-
ministic database, via the YCSB and TPC-C benchmarks. Our
evaluation shows up to 2.5× better throughput and more
than 150× and 300× better tail latency in non-contended
and contended cases, respectively. We also compare DO-
RADD with Caladan, the state-of-the-art non-deterministic
remote procedure call (RPC) scheduler, and demonstrate that
determinism in DORADD does not incur any performance
overhead.

This work is licensed under Creative Commons Attribution International 
4.0.
PPoPP '25, March 1-5, 2025, Las Vegas, NV, USA
 © 2025 Copyright held by the owner/author(s). Publication rights licensed 
to ACM.
ACM ISBN 979-8-4007-1443-6/25/03.
https://doi.org/10.1145/3710848.3710872

CCS Concepts: • Computing methodologies → Parallel
computing methodologies.

Keywords: parallel execution, determinism, runtime sched-
uling

1 Introduction
A deterministically parallel system (DPS) guarantees that
given exactly the same input, it will produce the same output
via parallel execution. Deterministic parallelism is a widely
researched topic, tackled by multiple different communi-
ties, i.e., operating systems [7, 20, 46, 57], architecture [16,
22, 33], distributed systems [6, 29], databases [25, 63, 69],
and programming languages [34]. In a nutshell, all these
approaches try to eliminate the external sources of non-
determinism, such as IO or random generators, and pre-
dictably control thread interleaving that performs parallel
accesses to shared memory, which would otherwise intro-
duce non-deterministic outcomes in multi-threaded applica-
tions.
Despite its various other usecases in testing and debug-

ging [46, 56, 61], deterministic parallel execution finds its
killer usecase in the space of distributed, replicated, and fault-
tolerant systems. State machine replication (SMR) serves as
the cornerstone for fault-tolerant systems [20, 29], where
each node must execute a pre-agreed log of operations. A
naive approach would be to execute all requests in a single
thread to avoid diverging execution, yet limiting through-
put. Deterministic parallel execution can safely eliminate the
single-threaded execution bottleneck. Deterministically par-
allel log replay can be applied to fast failure recovery and live
migration [28, 44, 45] in replicated databases, file systems,
and blockchains. Furthermore, deterministic databases re-
duce the need for two-phase commit across partitions when
processing transactions, helping to scale the performance of
distributed databases [3, 69].
Most DPS in this space follow a modular approach. A

sequencing layer external to the DPS is in charge of order-
ing and replicating operations. The DPS then execute these
operations in parallel, ensuring that the final result is equiv-
alent to a serial execution that follows the input sequence.

282

https://doi.org/10.1145/3710848.3710872
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3710848.3710872&domain=pdf&date_stamp=2025-02-28


PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA Liu et al.

Commonly, the sequencing layer has been a performance
bottleneck with high latency in the order of𝑚𝑠 [69].
However, recent research on datacenter systems and 𝜇𝑠-

scale computing [8] has driven the development of low-
latency distributed systems, challenging the previous state of
the art in DPS design and implementation. Techniques such
as kernel bypass, RDMA, and in-network compute allow
distributed systems to achieve high throughput, reaching
millions of requests per second, and latency of a few 𝜇𝑠 .
Examples of such systems are Mu [4] and HovercRaft [38]
for crash fault tolerance, uBFT [5] for byzantine fault tol-
erance, and NetChain [32] for primary-backup replication.
Consequently, the bottlenecks in DPS have transitioned from
the sequencing layer to the execution phase, emphasizing
the imperative to revisit deterministic parallel execution for
modern datacenter services.
In light of 𝜇𝑠-scale systems, we revisit the design and

implementation of DPS, discovering that none of the prior
works adequately address both high-throughput and low-
latency requirements essential for modern datacenter appli-
cations. Certain solutions are strictly optimized for through-
put using batched execution, thus suffering from high la-
tency [25, 26, 48, 63]. They also pay a high efficiency tax to
enforce determinism, wasting CPU cycles and being non-
work-conserving due to unnecessary synchronization. We
identify that such inefficiencies can be exacerbated in con-
tended [63] and heterogeneous [37] workloads consisting of
operations with highly variable service times.

In this paper, we introduceDORADD (i.e.,Deterministically
ORderedAccesseswithDynamicDAGs), a high-performance
deterministic parallel runtime for modern datacenter stateful
applications, e.g., key-value stores and transactional datas-
tores. DORADD is a multi-core runtime that allows efficient
execution of deterministically parallel Remote Procedure
Calls (RPCs) with high throughput, low latency, and effi-
ciency guarantees. Through a novel design of its scheduling
mechanism, DORADD guarantees that i) request dependen-
cies are respected, ii) incoming requests never have to unnec-
essarily wait to enforce determinism, thus leading to low la-
tency, and iii) available work will harness idle CPU resources,
i.e., work-conserving, even under highly contended cases,
thus leading to high throughput. DORADD is a pluggable
module, agnostic to the type of system used as a sequencing
layer, serving as a high-performance execution engine for an
ordered set of operations. For the rest of the paper, the terms
RPCs, requests, and operations are used interchangeably to
refer to the main execution unit in a DPS.

We implement DORADD in C++ and use it to build a series
of applications including a deterministic in-memory data-
base and primary-backup system. We evaluate DORADD
in a series of micro- and macro-benchmarks and compare
it with the current state-of-the-art deterministic and non-
deterministic systems. Compared to Caracal [63], the state-
of-the-art deterministic database, DORADD achieves up to

2.5× better throughput, due to work-conservation, while be-
ing able to do sowith 12 fewer cores than Caracal in the YCSB
and a modified TPC-C benchmark. DORADD also achieves
150× and 300× better tail-latency in non-contended and con-
tended cases compared to Caracal. To examine the cost of
determinism, we compare DORADD with Caladan [27], the
state-of-the-art non-deterministic RPC scheduler, serving
as an upper bound in achievable performance. DORADD
can achieve the same throughput under latency SLAs as Cal-
adan while guaranteeing determinism, i.e., it enables zero-
overhead deterministic execution.

This paper makes the following contributions:
• An efficient scheduling scheme that decouples request dis-
patching from execution and enforces determinism while
avoiding unnecessary synchronization.

• A scalable and reusable design for the single-dispatcher
architecture [21, 31, 35] based on core pipelining.

• A high-performance implementation of DPS that can pro-
vide both high throughput (millions of requests per second)
and low latency (at 𝜇𝑠-scale).
DORADD is open-source and can be found at https://

github.com/doradd-rt.

2 Background and Motivation
In this section, we revisit prior approaches to achieving de-
terministically parallel execution. We describe the common
system model most DPS follow, break down their execution
layer, and explain how they achieve determinism. Through
this analysis, we identify several common pitfalls in existing
schemes that lead to poor performance and inefficiency.

SystemModel:Most DPS targetting distributed and repli-
cated systems assume an existing ordered sequence of op-
erations they have to execute in parallel, ensuring that the
final result will be equivalent to the sequential execution
of the operations in their original order. Hence, the system
remains agnostic to the input source and focuses on the
execution. This modular approach of order-execute allows
better flexibility since the sequencing layer and the execution
engine can be chosen independently. The sequencing layer
can be a state machine replication system, e.g., Raft [58],
Paxos [41], or PBFT [12]. Apart from sequencing, this layer
is also in charge of durably logging the input operations for
fault-tolerance and recovery [48], thus removing the need for
such functionality from the DPS. Recent research in datacen-
ter systems [4, 5, 32, 38, 42] has shown that the sequencing
layer can scale to millions of transactions per second and
achieve 𝜇𝑠-scale latency using kernel-bypassing, RDMA, pro-
grammable switches, and persistent memory. DORADD also
assumes the existence of such a sequencing layer, the design
of which goes beyond the scope of this paper.

There are also other models deployed in DPS that mingle
the sequencing and execution layer, such as Rex [29] and
Eve [36]. However, those are application-specific and not

283

https://github.com/doradd-rt
https://github.com/doradd-rt


DORADD: Deterministic Parallel Execution in the Era of Microsecond-Scale Computing PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA

modular, thus making them more difficult to deploy and
adapt to different scenarios. For the rest of the paper, we
focus on this modular design that separates the sequencing
layer from the execution layer.
Deterministic Execution: The mechanisms to imple-

ment a deterministically parallel execution that respects a
serial order of operations can be divided into two main cate-
gories: optimistic and pessimistic. Optimistic approaches [28,
40, 48] are reactive, i.e., they execute first and then periodi-
cally checkwhether different execution units access the same
resources. In cases where conflicting accesses occur, parallel
execution is aborted, and the system rolls back, resorting
to either serial execution or retries. Optimistic approaches
have to operate on batches of operations that indicate the
boundaries in which the system checks for conflicts and rolls
back; hence achieving low latency is challenging. While op-
timistic approaches perform well in low contention cases,
their throughput and latency degrade significantly due to
high abort rates when there are many overlapping accesses
to the same resources.
Pessimistic approaches, on the other hand, are proactive

and need to ensure that accesses to the shared resources
indeed happen according to the agreed order. They follow
a schedule-execute model. The scheduling phase determines
which operations must be executed in a specific order and
which can be run in parallel. For instance, when two opera-
tions modify shared resources, they are interdependent and
cannot be processed in parallel; instead, they must follow the
specified order to ensure determinism. During the execution
phase, operations run respecting the constraints and order
determined by the scheduling phase, leading to no conflicts
and aborts due to races. As a result, pessimistic approaches
excel in high-contention scenarios [17, 63], as they avoid
costly aborts.
In the schedule-execute DPS, dependency analysis must

be performed during the scheduling phase to identify con-
flicting operations. To achieve this, they depend on a pre-
defined read-write set for each operation given by the user.
This is a widely used pattern in deterministic databases [25,
26, 63, 69], concurrency control schemes for one-shot trans-
actions [52, 53], and various blockchain systems for their
smart contracts [68, 72]. While this requirement imposes
additional complexity on the programming model with cer-
tain application logic, it greatly simplifies system design and
enhances overall throughput by preventing conflicts and
avoiding aborts.
Based on the dependency analysis, pessimistic schemes

derive a deterministic schedule that is enforced in different
ways, i.e., lock managers [69], multi-versioning [25, 63], and
dependency graphs [26, 30, 39]. Calvin [69] uses a centralized
lock manager to establish a lock order and ensure that shared
resources are accessed according to the pre-defined order
during the execution phase. Bohm [25] and Caracal [63] use
multi-versioningwithwrites creating new versions and reads

t(a)

(b)

Dependency

t

t

t

Sync Barrier

Wasted CPU Time

Figure 1. Inefficient runtime synchronization in prior works.
The left column denotes the incoming requests. The right
column denotes the execution in time series. Case (a) shows
core stalling due to inter-dependent requests and case (b)
shows so due to variance of service time (i.e., stragglers). For
visualization, we assume single-transaction epochs in (b).

accessing specific old versions decided during scheduling.
PWV [26], Kuafu [30], and CBASE [39] build a dependency
graph of operations based on their conflicts and operation
order. The resulting directed acyclic graph (DAG) defines the
partial order of execution.

After studying prior works on DPS, we identify two major
pitfalls that render them inappropriate for high-throughput
and low-latency datacenter applications.
Problem 1: High latency due to batched execution

(P1).Most of prior works on DPS adopt batched execution.
Optimistic systems need well-defined batch boundaries to
check for conflicts, while the reasons for this design choice
in pessimistic systems vary. Calvin [69] assumes that the
sequencing layer uses batches for scalability and inherits
this choice. Caracal [63] and Bohm [25] perform parallel
scheduling and require a batch of transactions to split across
all threads. We study the impact of batching on throughput
and latency for Caracal in §5.1. Batching, despite increasing
throughput, incurs significant latency, thus masking the 𝜇𝑠-
scale benefits coming from emerging datacenter systems. We
argue that this performance trade-off is not acceptable when
building a high-performance DPS which can be user-facing,
hence requiring low tail-latency.

Problem 2: Inefficient runtime synchronization (P2).
By only focusing on deterministic execution, many prior
DPS forgo an efficient use of the underlying CPU resources.
First, several pessimistic approaches depend on inefficient
busy-waiting to guarantee the correct order of accesses. For
example, in Caracal [63] that implements a multi-versioned
execution, a thread executing a transaction with a read-after-
write dependency has to actively wait till the read version is
ready, despite there being other transactions that this thread
could run without any determinism violation. Second, many
of the prior works, e.g., Bohm [25] and Granola [18] imple-
ment a static mapping of transactions to threads, which leads

284



PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA Liu et al.

2 10 20

Service time (μs)

0

2

4

6

Th
ro

ug
hp

ut
 (M

rp
s)

4% 6% 6%

66%

78%
79%

(a) Temporal locality

2 10 20

Service time (μs)

0.00

0.25

0.50

0.75

15% 19% 22%

80%

80%
80%

(b) Straggler request

Caracal DORADD

Figure 2. Caracal and DORADD throughput in synthetic
read-spin-write workloads. The percentage denotes the ratio
of actual throughput to the ideal throughput.

to imbalance with skewed workloads and non-conservation,
i.e., there are idle threads despite the presence of work that
can be executed without violating determinism. Finally, the
use of batching and epochs introduces inefficiencies when
dealing with highly variable service times, for example, strag-
gler transactions [37, 74]. Despite running on a single thread,
a long-running operation can prevent all other threads from
starting the next batch due to the strict synchronization
barriers.
Figure 1 illustrates some of the cases of inefficient CPU

usage. It shows two CPU cores with their request queues,
the assigned requests per queue, and how these requests
are executed over time. In Figure 1a, the dependency among
the green requests interconnected with arrows, combined
with the core assignment, leads to wasted CPU time in both
cores. Figure 1b shows how inter-core synchronization, e.g.,
epoch boundaries, combined with long-running transactions
or load imbalance wastes CPU cycles in the second core.
To further demonstrate the effect of P2, we use Cara-

cal [63], the state-of-the-art DPS, with two synthetic read-
spin-write workloads, each corresponding to the cases in
Figure 1. Each request needs to access 10 keys and spins for
a configurable amount of time. We fix the number of CPU
cores to 16 and measure the maximum achieved through-
put. We also measure the equivalent achieved throughput
for DORADD for the same workloads and compare it to the
ideal throughput. In an ideal scenario, all CPU cycles are
dedicated to processing the request, i.e., the throughput per
worker core should be the reciprocal of the average service
time. We assume such an ideal throughput where there are
no dependencies across requests and it scales linearly with
the number of cores. Figure 2 summarises the results.

First, we consider a workload with high contention. Arriv-
ing batches of requests show temporal locality, i.e., access a
common key, thus leading to serialization within the batch,
whereas requests belonging to different batches do not con-
flict. We assume batches of 100 requests. In this case, Caracal
suffers extremely low CPU utilization with nearly sequen-
tial execution, hence 6% (1/16 cores) of the ideal throughput.

 Request 
Dependency DAG

Logical Dispatcher

Deterministic 
OrderingRequest 

Input

Coordination-free 
Execution

from a
sequencing layer

Figure 3. DORADD Architecture. The cores are split into
dispatcher and worker cores. The pipelined dispatcher cores
construct a dependency DAG of requests, while worker cores
execute them in a coordination-free manner.

Even though the next batch of requests does not depend on
the previous one, almost all cores busy-wait for dependencies
within the previous batch. In contrast, DORADD manages to
concurrently process requests that do not conflict on all the
available cores, while conflicting requests run on the same
core.
Second, we consider the straggler request scenario, fol-

lowing the similar setting in [48, 74], in which each batch
of 10k requests contains a 20ms straggler. Caracal suffers
a significant slowdown due to stragglers while DORADD
stays resilient. Note that DORADD uses three cores for dis-
patching which we illustrate in §4 while the rest are worker
cores for request processing, thus leading to maximum ratio
as 81% (13/16 cores).

3 The DORADD Design
We design DORADD, a deterministically parallel runtime
targeting 𝜇𝑠-scale datacenter services. We set the following
design requirements. DORADD should: i) follow the same
order-execute pattern used in prior works, leveraging an ex-
ternal sequencing layer, while remaining agnostic to it; ii)
allow for low latency deterministic responses, i.e., online
latency-critical datacenter services should run on top of DO-
RADD without compromises; iii) have a work-conserving
design without unnecessary synchronization that achieves
high efficiency and supports high throughput.

To accommodate low latency and highly contended work-
loads, DORADDadopts the pessimistic schedule-executemodel
and introduces a scheduling scheme that enforces determin-
istic execution, while tackling the two problems, P1 and P2.
DORADD’s programming model makes the same assump-
tions as prior works, in which users explicitly declare the
read and write set of each operation.

3.1 High-level System Design
DORADD completely decouples request scheduling from
request execution. There are dedicated cores to dispatch and
schedule incoming requests and others to execute those re-
quests. There is a single input queue to the system that
consumes the input from the sequencing layer and acts

285



DORADD: Deterministic Parallel Execution in the Era of Microsecond-Scale Computing PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA

as a serialization point. The dispatcher cores operate as
a single logical dispatcher and are the ones in charge of
enforcing determinism at scheduling time. The job of the
worker cores is to follow and respect the execution plan de-
termined by the dispatcher cores. For now one can assume a
single-core dispatcher for simplicity. §3.4 describes how to
scale up the dispatcher without violating determinism. Such
a design, inspired by state-of-the-art 𝜇𝑠-scale RPC sched-
ulers [21, 31, 35, 59], allows the two parts, scheduling and
execution, to work completely independently in parallel and
serve a contiguous flow of incoming requests, instead of alter-
nating between scheduling and execution phases [28, 63, 69].
Consequently, DORADD operates without epochs, enabling
low latency and avoiding P1.

The core of the deterministic scheduling logic is a dynamic
Directed Acyclic Graph (DAG) that organizes incoming re-
quests in a partial order based on the shared resources they
require to access during their execution. For a given serial
order of requests, there is a unique DAG. The dispatcher is
in charge of constructing this DAG. Similar to dataflow pro-
gramming, requests that need to access the same resource
have a dependency on each other, and the order of these
dependencies follows the order the dispatcher processes
them. Several prior works use similar dependency analy-
sis to derive parallel execution. However, without the focus
on 𝜇𝑠-scale datacenter services, they fall short in providing
an efficient and high-throughput implementation [30], and
in how they interleave the dependency analysis with execu-
tion, since they depend on epoch-based approaches that lead
to high latency [26]. In contrast, DORADD builds a dynamic
DAG in an epoch-free manner and bypasses inefficiencies of
prior works through its pipelined dispatcher (illustrated in
§3.4).
Worker cores can execute a request from the DAG when

it has no dependencies, i.e., when all previous requests that
access overlapping shared resources have finished their ex-
ecution. Requests run to completion in a coordination-free
manner, i.e., they do not need to use locks or similar synchro-
nization primitives, since the deterministic scheduling by
the dispatcher guarantees exclusive access to those shared
resources by design. Once a request finishes its execution, its
dependent requests become available for execution on the
worker cores. This architecture ensures a work-conserving
execution, i.e., as long as there are requests with no depen-
dencies, they will be executed immediately if there is an
idle core. Also, worker cores will never have to inefficiently
busy-wait to guarantee determinism, thus solving P2.

Figure 3 summarizes the above description. Requests come
into the dispatcher from the sequencing layer. The dispatcher
serializes their order on its single queue and dynamically con-
structs the requests’ DAG based on their dependencies.Work-
ers consume this DAG without needing to synchronously
communicate with the dispatcher. Bold boxes represent re-
quests that can be executed, i.e., dependencies are resolved.

// Transfer procedure with src/dst resources to write to.
void transfer(Resource* src, Resource* dst,

uint64_t amount) {
src->balance -= amount;
dst->balance += amount;

}

// Balance procedure with account resource to read from.
uint64_t balance(Resource* account) {

return account->balance;
}

Listing 1. Bank example in DORADD.

3.2 Programming Model
Following the majority of DPS approaches discussed in §2,
DORADD adopts a programming model that explicitly bun-
dles the RPC logic with the shared resources—of any form
and granularity as determined by the programmer—that the
RPC needs to access. This design is crucial for decoupling
scheduling from execution, enabling more efficient resource
management and execution flow.
DORADD leverages two main abstractions: procedures

and resources. A procedure is a unit of single-threaded exe-
cution and implements the RPC logic. A resource is any part
of the system state for which the order of accesses could
interfere with the system’s deterministic execution. In its
simplest form, a resource is a piece of memory, e.g., a C++
object. A resource can not be accessed concurrently by mul-
tiple threads. Procedures take resources as arguments and
cannot access any other resources beyond their argument
list because this would be a determinism violation. When
a procedure is executed in DORADD, it has guaranteed ex-
clusive access to its resources. Consequently, DORADD also
avoids data races and deadlocks resulting from error-prone
implementation when coupling concurrency control with
scheduling. Currently, there is no difference between read
and write resources, as they are both treated equally as a de-
pendency in DORADD. We leave this optimization as future
work.

Programmers can write applications on top of DORADD
as RPC services. Each DORADD application exposes a set of
RPC endpoints. Each RPC type corresponds to a procedure
that takes resources as arguments. Resource names are known
to clients and there is a mapping from names to the actual
resources taking place during scheduling in DORADD.
As an example, consider a simple bank application (List-

ing 1) that only allows for two transaction types, one to get
the current account balance and one to transfer money be-
tween accounts. In this scenario, each account is a resource,
the transaction to get the account balance is a procedure with
a single resource, and the transaction for account transfers is
a procedure with two resources.

Figure 4 shows an ordered stream of requests for the above
bank application coming into the dispatcher. Every request
explicitly states the procedure name, balance or transfer,

286



PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA Liu et al.

(2) Request dependency graph

Req1
balance(a1)

Req2
balance(a2)

Req3
transfer(a1,a2)

Req4
balance(a2)

Req5
balance(a3)

Req2
balance(a2)

Req3
transfer(a1,a2)

Req4
balance(a2)

(1) Incoming requests in the serial order
Dispatcher

Req5
balance(a3)

Req1
balance(a1)

Figure 4. From serial to partial RPC order based on their re-
source dependencies. Bold requests on the right (Req1, Req2,
and Req5) are ready to run.

and the set of resources, i.e., accounts 𝑎𝑖 , it needs to access
and use as arguments in the procedure call. The dispatcher
dynamically constructs the DAG seen in the same figure by
inspecting the overlapping dependencies. Req1, Req2, and
Req5 can execute immediately since they have no dependen-
cies to wait for. Req3 needs to wait for the termination of
Req1 and Req2, since they have overlapping accesses to the
same resources, i.e., 𝑎1 and 𝑎2. Similarly, Req4 needs to wait
for Req3 because of 𝑎2. We note that these are only schedul-
ing dependencies enforced by the dispatcher and DORADD’s
workers will never have to actively wait for those. As long as
there are requests to be executed, i.e., Req1, Req2, and Req5,
they can run on any worker core.
Limitation: A limitation of this programming model,

which is similar to all other pessimistic DPS, is that it cannot
support all types of RPC services. Instead, it requires that all
the shared resources of a request are known at dispatching
time. Despite seeming limiting, prior works have shown that
such a programming model can express a variety of stateful
applications, such as deterministic databases [25, 26, 63, 69],
one-shot transactions in concurrency control schemes [52,
53], a wide range of blockchain systems for their smart con-
tracts [68, 72], and even certain types of microservices, e.g.,
carefully crafted CRUD (Create Read Update Delete) RESTful
APIs [1].

3.3 DORADD Scheduling Scheme
DORADD introduces a novel scheduling scheme that is
specifically designed for low-latency, without batching re-
quirements. It is work-conserving, which increases efficiency,
without violating determinism, and reduces the need for co-
ordination between the dispatcher and workers, resulting
in lower overhead. It follows a hybrid approach in which
both the dispatcher and the workers participate in schedul-
ing, i.e., the process deciding which worker core will run
which procedure and when. This hybrid approach substan-
tially reduces the dispatcher load, whose main duty is to

construct the DAG, and not schedule procedures to cores,
thus improving the dispatcher throughput.
When a request enters DORADD, it is first processed by

the dispatcher, which identifies its corresponding procedure
and required resources. The dispatcher then adds the proce-
dure to the DAG. Each resource required by the procedure
creates a dependency on the most recently scheduled pro-
cedure that also needs the same resource. For example, in
Figure 4, Req3 depends on both Req1 and Req2, meaning
it cannot be executed until both have completed. Adding a
new procedure to the DAG can lead to an unconnected node,
e.g., Req5. Such procedures do not have any dependencies
and can be executed immediately. The dispatcher adds such
procedures to the runnable procedures set.
The runnable procedures set is an unordered set of proce-

dures that has no unresolved dependencies, allowing them
to be executed in any order without violating DORADD’s
determinism guarantees. Bold boxes in Figure 3 and Figure 4
indicate procedures in the runnable procedures set. Workers
can then actively remove from this set and execute themwith-
out needing to coordinate with the dispatcher. Any worker
can execute any procedure from this set and the dispatcher
does not participate in this decision. The dispatcher only
adds procedures to this set, yet the workers both add and
remove, forming DORADD’s hybrid scheduling scheme.
A worker constantly pulls procedures from the runnable

procedures set and runs them to completion, without needing
to wait on any synchronization primitives. When a procedure
finishes its execution, the worker inspects any procedures
from the DAG that depend on the finished one. If they are
eligible for scheduling, i.e., if they have no unresolved de-
pendency, the worker adds those procedures to the runnable
procedures set, so that any worker can execute them. For
example, after the worker core finishes executing Req3 (Fig-
ure 4), it also adds Req4 to the runnable procedures set, be-
cause Req4 depends solely on Req3. The worker then pulls a
new procedure from the set and continues in the same way.
This decoupled and hybrid scheme offers DORADD its

performance benefits. First, unlike any other previous DPS,
it operates in a contiguous streaming manner and does not
require epochs that hinder latency. Second, procedures are
eagerly added to the runnable procedures set as long as they
have no pending dependencies without being affected by any
stragglers, thus leading to low latency. Finally, workers can
independently pull from this set if idle without coordination
with the dispatcher, thus achieving work-conservation and
reducing expensive inter-core communication.

3.4 Scalable Pipelined Dispatcher
The single-dispatcher design is the cornerstone of DORADD’s
deterministic execution, since it guarantees the creation of a
unique DAG given a sequence of requests. However, such a
design raises concerns about the dispatcher becoming a po-
tential throughput bottleneck [63] if implemented on a single

287



DORADD: Deterministic Parallel Execution in the Era of Microsecond-Scale Computing PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA

core. DORADD leverages two mechanisms to mitigate this
limitation. First, it employs a pipelined [66] dispatcher archi-
tecture, which leverages multiple cores to increase through-
put. This approach effectively extends the single-core dis-
patcher into single logical dispatcher pipeline, preserving
determinism while enhancing performance. Second, it care-
fully eliminates pipeline stalls through prefetching.

The rationale behind a deterministic pipeline architecture
is the following. In a single-core system where tasks are di-
vided into independent sub-tasks with each taking 𝑡𝑖 time,
the throughput is 1∑

𝑡𝑖
. Organizing these tasks in a pipeline

will increase the system throughput to 1
𝑚𝑎𝑥 (𝑡𝑖 ) . Consequently,

breaking the dispatcher logic into deterministic sub-tasks
that do not interfere, i.e., access disjoint resources, and as-
signing those tasks to a set of cores can help the dispatcher
scale up to multiple cores, thus improving its throughput.
The throughput of the dispatcher pipeline is determined

by its slowest processing stage. DORADD optimizes each
dispatcher component and eliminates any expensive DRAM
accesses on the dispatcher datapath, which significantly im-
pacts performance. When adding a procedure to the DAG, the
dispatcher must access at least one cache line per resource.
For a large resource namespace with uniform access patterns,
this could potentially result in an equal number of DRAM
accesses to the number of resources in each RPC. For exam-
ple, for requests with 10 resources each and a DRAM access
latency of 100 𝑛𝑠 , the dispatcher throughput cannot be more
than 1 Mrps. To mitigate that, DORADD dedicates a core
in the dispatcher pipeline to prefetch resources requested
by each RPC, such that when later pipeline stages need to
access those they will be found in cache.
The current dispatcher pipeline consists of three main

components. First, the Indexer performs name resolution
and finds the address of the target resources in each re-
quest. Then, the Prefetcher prefetches those resources from
DRAM to the CPU cache. Finally, the Spawner is in charge of
constructing the DAG based on the resources each procedure
requires. Each component can run on a separate CPU core
and communicate with adjacent ones through bounded SPSC
queues. Cores process all incoming requests in the same or-
der and move forward almost in tandem for efficient cache
usage.

4 Implementation
We implemented DORADD in 6.3k LoC of C++. This includes
a heavily modified Verona runtime [51], used in BoC [13], to
manage the workers. DORADD eliminates dynamic mem-
ory allocations in the dispatcher with memory pools and
uses huge pages to reduce page walk overheads and cache
pollution due to TLB misses.
Runnable procedures set:DORADDorganizes the runnable
procedures set as a group of per-worker queues, instead of
implementing a shared data structure that could become

Spawner

Prefetcher

Indexer

RPC Handler
Request Entry

Request 
Ring Buffer

Figure 5. The logical dispatcher pipeline. Each core operates
a sub-task in dispatching and communicates via a bounded
SPSC queue. Request ring buffer is shared across all cores.

a bottleneck due to concurrent accesses from all the cores.
The per-worker queue is a lock-free multi-producer multi-
consumer (MPMC) queue [51], facilitating fast request sched-
uling andwork-stealing. Hence, the runnable procedures set is
distributed across these per-worker queues. When a worker
needs to add to the set, it assigns to its own queue. When
the dispatcher needs to add to the set, it selects a worker
queue in a round-robin manner. Workers pull from the set
by first checking their own queue, and if empty, they steal
work from other worker queues.
Dispatcher pipeline:DORADDuses a ring buffer for incom-
ing requests, which is shared across all cores in the pipeline.
Every core processes requests in place and uses a bounded
SPSC queue to signal the next core in the pipeline to take
over. An additional pipeline stage at the beginning serves as
the RPC handler that processes the input from the sequenc-
ing layer and prepares the request entry in the buffer, i.e.,
identifying the target procedure and resource names, followed
by the Indexer, the Prefetcher, and the Spawner. Figure 5
describes the dispatcher pipeline architecture.

To reduce inter-core communication and further improve
the dispatcher pipeline throughput, DORADD leverages adap-
tive bounded batching [9] in the scheduling phase. Each
pipeline stage communicates to the next stage over the SPSC
queue the number of ring entries it should process next, in-
stead of communicating one entry at a time. Once a core
completes processing a small batch of requests, it pushes
the batch size into the SPSC queue for the next core. The
push operation is blocking if the queue is full, ensuring back-
pressure when necessary. The first core in the pipeline (RPC
handler) determines the size of each batch, i.e., 1 to the maxi-
mum batch size, based on the available requests at the system
input. It never waits for a full batch; instead, it adaptively
processes all available requests up to the batch limit to main-
tain low latency. In the evaluation, we use bounded queues
of 4 entries and a maximum batch size of 8, since this con-
figuration performs better for the target workloads. Notably,
though DORADD leverages adaptive batching in scheduling
as a performance optimization, DORADD executes requests

288



PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA Liu et al.

without batching, unlike prior works (P1), where batched ex-
ecution groups thousands of requests per epoch, significantly
increasing latency.
The number of dispatcher cores is statically decided at

the launch of the system, based on the target workload. We
study the impact of the number of pipeline cores in §5.4.
Dynamic assignment of cores is left as future work.

5 Evaluation
Our evaluation aims to answer the following questions:
• How does DORADD compare with state-of-the-art DPS?
(§5.1)

• What is the cost of enforcing determinism in RPC services
and how does DORADD compare with state-of-the-art
non-deterministic 𝜇𝑠-scale RPC schedulers? (§5.2)

• How can DORADD improve the performance of fault-
tolerant applications? (§5.3)

• What is the performance contribution of each dispatcher
optimization and what are the limitations of pipelined
architecture? (§5.4)
Testbed:We run our evaluation on a mix of CloudLab [24]

and local testbed machines. Our local testbed consists of two
directly connected machines with an Intel Xeon Gold 5318N
CPU with 24 cores and 1 NUMA zone running at 3.40 GHz,
128 GB of DRAM, and 100G Mellanox ConnectX-6 NICs.
On CloudLab we used 3 d6515 servers interconnected by a
switch. All machines run Ubuntu 22.04 kernel with hyper-
threading disabled.

5.1 Performance Comparison with other DPS
Methodology: We choose Caracal [63] as a baseline rep-
resenting other DPS. Caracal is the current state-of-the-art
deterministic database, achieving millions of transactions
per second and surpassing prior works [18, 25, 26]. Caracal
uses multi-version concurrency control and batches transac-
tions into epochs. Each epoch contains two phases, i.e., one
concurrency control phase to determine conflicts and one ex-
ecution phase. To compare with Caracal, we use DORADD
to implement an in-memory database. We run all experi-
ments on one of our local testbed machines and dedicate
one core to generate requests based on an open-loop Pois-
son process by replaying a memory-mapped pre-generated
request log containing 1M requests. In our experiment, there
is no sequencing layer to order the input; we assume that
logging is handled by that layer before the request enters
our system. The open-sourced codebase [64] of Caracal re-
lies on statically generating transactions for each core and
each epoch before runtime. To align the experiment setting
for Caracal, we modified 300 LoC to enable it to receive
incoming requests from the same generator core. We also
disable syscall-involved logging in Caracal to make a fair
comparison with an in-memory database built via DORADD.

YCSB TPCC-NP

Transaction
Types

10 keys from 10M keys
(Number of hot keys: 77)

NewOrder
Payment

Contention

No 8 reads, 2 writes
0/10 hot keys

23
warehouses

Mod All writes
3/10 hot keys

8
warehouses

High All writes
7/10 hot keys

1
warehouse

Table 1. YCSB and TPCC-NP configurations.

Experiments:We run the YCSB [17] and TPCC-NP [2]
benchmarks configured as seen in Table 1. In YCSB, we adopt
the same settings as in Caracal. We group 10 unique key
accesses in a single request and configure each row with
900 bytes. A read operation reads the entire row, while a
write operation updates the first 100 bytes. Both uniform
and skewed access patterns are considered: the former is
represented by No Contention case in Table 1 and the latter
is modeled by selecting hot keys to represent contention, as
same as the settings in Caracal. Hot keys are chosen from 77
rows that are spaced 217 apart in the 10M key space, while
other keys are picked uniformly. In TPCC-NP, following the
same modeling approach as in prior work [11, 65, 71, 73], we
use an equal mix of NewOrder and Payment transactions,
which account for 88% of all transactions in standard TPC-C.
The default TPC-C sets the number of warehouses equal to
the number of CPU cores and has low contention. As we
dedicate one core as the client load generator, we have 23
cores available in our testbed as worker cores, therefore we
set 23 warehouses to represent a non-contention scenario.

Results: Figure 6 shows the latency vs throughput curves
for Caracal and DORADD in the YCSB and TPC-C bench-
marks. Overall, DORADD significantly outperforms Caracal
in both latency and throughput. It achieves similar through-
put for non-contended cases yet up to 2.5× better throughput
for contended ones. It achieves more than 150× and 300×
lower tail latency for non-contended and contended cases.
Throughput benefits are due to the DORADD’s work con-
servation, while Caracal suffers from unnecessary spinning
under contention. Caracal will block the current worker core
until the target version of objects is ready, the effects of
which are pronounced in high contention cases, resulting in
efficiency reduction. On the contrary, DORADD harnesses
all worker cores for useful work. More importantly, DO-
RADD achieves significantly better tail latency thanks to
the decoupled architecture which allows the dispatcher and
the workers to operate independently. Reducing the epoch
size in Caracal does improve latency, but also significantly
reduces throughput.

289



DORADD: Deterministic Parallel Execution in the Era of Microsecond-Scale Computing PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA

1 2 3 4 5
Throughput (Mrps)

101

102

103

104

105

Ta
il 

la
te

nc
y 

(μ
s)

YCSB no contention

1 2 3
Throughput (Mrps)

101

102

103

104

105

Ta
il 

la
te

nc
y 

(μ
s)

YCSB mod contention

1 2
Throughput (Mrps)

101

102

103

104

105

Ta
il 

la
te

nc
y 

(μ
s)

YCSB high contention

0.5 1.0 1.5 2.0 2.5
Throughput (Mrps)

101

102

103

104

105

Ta
il 

la
te

nc
y 

(μ
s)

TPCC-NP no contention

0.5 1.0 1.5 2.0
Throughput (Mrps)

101

102

103

104

105

Ta
il 

la
te

nc
y 

(μ
s)

TPCC-NP mod contention

0.5 1.0 1.5 2.0
Throughput (Mrps)

101

102

103

104

105

Ta
il 

la
te

nc
y 

(μ
s)

TPCC-NP high contention

Caracal ES100
Caracal ES500

Caracal ES1000
Caracal ES5000

Caracal ES10000
Caracal ES20000

DORADD
DORADD-Split

Figure 6. YCSB and TPCC-NP Latency v.s. Throughput. Caracal ES represents different epoch sizes in number of transactions.

An interesting scenario that showcases the flexibility of
DORADD’s programming model appears in the highly con-
tended TPC-C experiment. High-contended TPC-C uses a
single warehouse, in which all requests require the same
resource. Consequently, a naive implementation of the bench-
mark leads to a serial execution of all requests, which suffers
in terms of throughput as seen by the DORADD curve. By
studying the TPC-C transaction implementation we identi-
fied that warehouses are updated independently, thus the
transaction logic can be split to the contended warehouse
update part, and the rest of the transaction logic. In this
way, DORADD’s dispatcher atomically schedules two sub-
transactions that can execute in parallel. After splitting, DO-
RADD achieves 1.65Mrps (indicated as DORADD-split in the
same figure) while Caracal only reaches 1.2Mrps.

Efficiency: During the evaluation, we experimented with
reducing the number of cores for both Caracal and DORADD.
We observed that DORADD achieved the above performance
even with 8 worker cores, while adding more workers did
not change the maximum throughput, since the dispatcher
or the workload itself can limit scalability. Caracal required
all 23 workers to achieve that performance, and for reference
achieves 3.8Mrps in non-contended YCSB and 1.6Mrps in
non-contended TPC-C, which are 0.7x of the performance
with 23 cores.

5.2 The Cost of Determinism
Methodology: To study the cost of determinism, we com-
pare DORADD with Caladan [27], the state-of-the-art RPC
scheduler, which is inherently non-deterministic by design.
We reuse the synthetic applications from Caladan artifacts
and made 100 LoC changes. Upon receiving a request, each
worker core operates in a two-phase locking manner: 1)
acquires a specified number of locks, 2) performs some sim-
ulated work, equivalent to a fixed amount of service time,
and 3) releases the locks. To guarantee deadlock-freedom,
workers acquire locks with lower IDs first and release them
in reverse order. Caladan implements an asynchronous user-
level mutex which yields the thread execution if the mutex is
already held during an acquisition attempt. The first baseline
runs Caladan with its asynchronous mutex. We also imple-
ment a spinlock-based non-deterministic baseline. We use
UDP RPCs to both Caladan and DORADD with minimum
single-packet requests and responses.
Experiments: We run experiments in which each RPC

accesses 10 different locks from a 10M keyspace following a
uniform or a Zipfian distribution with different 𝜃 parameters
and spins for 5 or 100 𝜇𝑠 . We choose these two service times
to study the impact of determinism both in terms of system
overheads with short requests and in terms of inherent par-
allelism reduction at the workload level with longer requests
that diminish the effects of system inefficiencies. For both
Caladan and DORADD, we use 8 worker cores and 1 dis-
patcher core. Given that Caladan introduces mechanisms to

290



PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA Liu et al.

0.5 1.0 1.5
Throughput (Mrps)

101

102

103

Ta
il 

la
te

nc
y 

(μ
s)

Uniform (5μs)

20 40 60 80
Throughput (krps)

102

103

104
Uniform (100μs)

DORADD Non-deter Spinlock Non-deter Async Mutex

0.5 0.8 0.9 0.95 0.99
Zipfian theta

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

M
ax

 t
hr

ou
gh

pu
t 

(M
rp

s) Zipfian (5μs)

0.5 0.8 0.9 0.95 0.99
Zipfian theta

20
40
60
80

100

M
ax

 t
hr

ou
gh

pu
t 

(k
rp

s) Zipfian (100μs)

DORADD Non-deter Spinlock Non-deter Async Mutex

Figure 7. Performance comparison with non-deterministic
systems.

trade efficiency with tail latency, we configure it in the per-
formance mode (set optimize build mode and use spinning
kthreads) to make a fair comparison. We run this experiment
on our local testbed with one client and one server, both
equipped with a DPDK networking stack. We measure the
tail latency under different load levels and the maximum
throughput each configuration can achieve.

Results: We first focus on the latency curves in Figure 7.
For the 100𝜇𝑠 workload, where system overheads can be
masked, all systems achieve similar performance. For the
5𝜇𝑠 workload where system overhead can be manifested, we
find that DORADD achieves slightly better tail latency and
maximum throughput. In DORADD, the dispatcher core is-
sues prefetching and executes atomic operations for each key
and each worker only executes the real workload, whereas
for non-deterministic systems, each worker core needs to
perform additional atomic operations. Better cache locality
for atomic operations results in better performance in DO-
RADD. We only show results for the uniform distribution,
but the Zipfian distributions behave similarly. Overall, we
can claim that DORADD and deterministic execution do not
incur any extra overhead when focusing on the achieved
throughput under a latency SLA, i.e., 1 ms in this case.

When focusing on the maximum throughput, results look
slightly different, especially under high contention. Under
higher contention (𝜃 > 0.9), non-deterministic systems ex-
hibit higher throughput (at max 15% compared to DORADD)
due to the absence of determinism. Determinism introduces
more dependencies among requests compared to just mutual
exclusion. Thus it overall limits the available workload par-
allelism and reduces the maximum throughput. In the same
figure, we can also observe the benefits of the asynchronous
mutex execution compared to the spinlock-based execution

Client

Primary

Backup
exec

exec

0.00 0.25 0.50 0.75 1.00 1.25
Throughput (Mrps)

101

102

103

Ta
il 

la
te

nc
y 

(μ
s)

Single-threaded
Replicated DORADD
Non-replicated DORADD

Figure 8. Active primary-backup replication. The primary
does not need to wait for execution in the backup due to
determinism.

among non-deterministic systems, since the asynchronous
mutex makes better use of the underlying CPU resources
and allows requests that can make forward progress to pro-
ceed. The same property exists in DORADD as well while
respecting determinism.

5.3 End-to-End Use Case: Replication
One of DORADD’s killer use cases is to increase the through-
put of a replicated system since it offers an application-
transparentway of doing so. To illustrate this andDORADD’s
use as a pluggable component, we implement the simplest
form of a replicated system, i.e., an active primary-backup,
to act as the sequencing layer. For this experiment, we use 3
machines on CloudLab with one client, one primary server,
and one backup server. We deploy the 5𝜇𝑠 synthetic applica-
tion of the previous section with a uniform distribution and
consider two baselines. A non-replicated, hence not fault-
tolerant, version of DORADD serves as an upper limit in
terms of throughput and lower limit in terms of latency.
The second baseline is a replicated single-threaded system
which is the canonical way of deploying such services to
guarantee deterministic state transitions. In this experiment,
the primary-backup subsystem does not implement durable
logging, since this is beyond the scope of this work. Such
systems can scale and achieve 𝜇𝑠-scale latencies through the
use of persistent memory and fast networking [70].

Figure 8 presents the replication process and experiment
results. Replicated DORADD achieves both high throughput
and fault tolerance, while guaranteeing low latency with
only a trivial throughput cost. It has the same latency as
the single-threaded execution due to the extra round-trip,
while it achieves 1.28Mrps, which is marginally less than
the maximum throughput (1.31Mrps) of the non-replicated
version.

5.4 DORADD Design Analysis
Dispatcher optimizations: DORADD leverages prefetch-
ing and core pipelining to build a high-performance dis-
patcher. To evaluate the impact of these mechanisms on
DORADD’s performance, we conduct experiments using

291



DORADD: Deterministic Parallel Execution in the Era of Microsecond-Scale Computing PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA

10k 100k 1M 10M 64M
(a) Size of entire keyspace

1

3

5

Th
ro

ug
hp

ut
 (M

rp
s)

2 5 10 20
(b) Number of keys per transaction

1

3

5

7

Th
ro

ug
hp

ut
 (M

rp
s)

No Optimization
Prefetching

2-Core Dispatcher
3-Core Dispatcher

Figure 9. Performance contribution for DORADD’s dis-
patcher optimizations, i.e., prefetching and core-pipelining.

synthetic workloads with four variants: 1 single-core dis-
patcher without prefetching (No Optimization), 2 single-
core dispatcher with prefetching (Prefetching), 3 two-core
dispatcher where one core handles both index lookups and
prefetching, and another core is responsible for spawning
tasks, 4 three-core dispatcher with one core dedicated to
indexing, another to prefetching, and a third for spawning
tasks. To explore the impact of optimizations upon mem-
ory and cache behaviors, we vary i) the size of the entire
keyspace and ii) the number of keys for each transaction.
Figure 9a shows the maximum achieved throughput for

various sizes of key space, with 10 keys chosen uniformly for
each transaction. We observe that as the size of the key space
increases, the importance of the pipeline design becomes
more significant. Also, the pipeline design allows throughput
to stay around the same levels despite the increased memory
pressure.
Figure 9b shows the maximum achieved throughput as

a function of the number of keys in a request for a 10M
keyspace. We observe a consistent benefit from prefetching
and pipelining across configurations. Throughput decreases
though, as the number of keys per request increases, given
the Spawner is the current bottleneck in the pipeline. The
Spawner needs to do atomic operations, which in the worst
case are equal to the number of keys. Although we could
further pipeline the execution of the Spawner, this is not
necessary for DORADD’s current performance goals. Our
rationale was that for more keys per request, request exe-
cution would become more expensive, thus the bottleneck
would shift to the worker cores.
Limitations of the pipeline design:While core-pipelining
provides evident benefits for scaling up a single logical dis-
patcher, we set out to investigate its limitations. We study

2 3 4 8 12 16 20 24
Core counts in the pipeline

0
3
6
9

12
15

Th
ro

ug
hp

ut
 (M

rp
s)

Read
Write

Figure 10. Pipeline throughput with various core counts
in the pipeline. Multiple cores in a pipeline reads/writes a
shared ring buffer sequentially.

the introduced overheads and how these change as a func-
tion of the number of cores in the pipeline. We eliminate
the processing in each stage to the bare minimum, i.e., a
single read or a write operation on the shared ring entry.
We use the same pipeline infrastructure, i.e., shared ring,
bounded queues of size 4, and a maximum adaptive batch
size of 8. Although different queue and batch sizes could lead
to higher throughput, we use the same settings as the rest
of the evaluation.
Figure 10 shows the maximum achieved throughput as

a function of the number of cores in the pipeline for read
and write accesses. As expected, adding cores in the pipeline
reduces the overall throughput due to their inter-core com-
munication overheads, while throughput is lower when all
cores need to update the shared cache line. Note that in the
current DORADD design, only the Indexer needs to modify
shared memory to be read by the Prefetcher and Spawner.
Based on this analysis, one can conclude that the current DO-
RADD design could support more stages by breaking down
the Spawner as identified in the previous experiment. Fur-
thermore, this analysis offers insights for future systems that
require a single dispatcher that could be pipelined, beyond
the scope of DPS.

6 Discussion
Handling other sources of non-determinism: In the cur-
rent DORADD’s implementation and evaluation, we only
focus on internal sources of non-determinism, i.e., accesses to
shared memory resources, which are necessary for transac-
tional datastores. However, DORADD’s programming model
can be extended to cover more general-purpose RPCs sup-
porting external sources of determinism, such as timers and
random number generators. For example, a random number
generator is a resource that incoming requests can require as
any other and produces numbers in a pseudo-random and
deterministic way.
Failures and checkpointing:Many DPS implement check-
pointingmechanisms to bootstrap the system execution from
a snapshot and reduce the size of the operation log main-
tained by the sequencing layer that needs replay. Moving
away from epoch-based approaches could complicate such
mechanisms. A straightforward way to implement check-
pointing in DORADD is to periodically stop the dispatcher

292



PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA Liu et al.

from processing new requests, wait for the worker queues
to drain completely, and then take a memory snapshot. DO-
RADD’s superior throughput performance can increase the
duration of the checkpointing epochs, and thus reduce the
frequency of pipeline stalls. DORADD currently does not
implement checkpointing.
Non-preemptive scheduling: DORADD implements non-
preemptive scheduling for procedures, with each procedure
executed to completion. DORADD can be extended with co-
operative or even preemptive scheduling without violating
deterministic execution. Long-running procedures can either
cooperatively yield execution or be preempted and parked in
the runnable procedure set, where they will be scheduled for
execution at a later time. Worker cores schedule dependent
procedures only after the corresponding procedure has com-
pleted, rather than when it is preempted or yields, ensuring
a deterministic execution outcome.

7 Related Work
Deterministic parallel execution has been approached by
different research communities.
Databases: Calvin [69] is an early deterministic shared-
memory epoch-based database, which uses a centralized
single-threaded lock manager to serialize lock orders. Un-
like Calvin, Bohm [25] and PWV [26] take a partitioned ap-
proach in lock acquisition, which introduces several issues,
i.e., load imbalance, poor scaling with skewed or hard-to-
partition workloads, and increased programming complexity.
QueCC [62] adopts a priority queue-oriented approach to
dispatch transactions to different partitions to avoid aborts.
Aria [48] optimistically overcomes the limitation of pre-
defining read-write sets with deterministic reordering by
transforming read-after-write dependencies to write-after-
write ones, yielding a deterministic result that differs from
that of the agreed-upon order. All of these works are primar-
ily built atop an epoch-based design, leading to high latency
and low efficiency. DecentSched [14] uses per-object queu-
ing and a decentralized scheduling scheme, yet relying on
epoch-based execution. Recent work also studies distributed
multi-partition deterministic transactions [55, 74].
Operating systems and architecture: Several prior works
focus on thread or process level determinism [10, 22, 46].
Kendo [57] introduces the notion of a deterministic logical
clock to construct a lock acquisition schedule based on in-
struction counters. Other works re-architect the memory
consistency model [23, 47] or rely on extensive kernel modi-
fications [49, 50]. DetTrace [54] proposes reproducible con-
tainers yet in single-threaded execution, mainly targeting
debugging and testing. There are also research efforts on
deterministic GPUs [16, 33].
Statemachine replication:CRANE [19], similar to Rex [29]
and Eve [36], follows a co-design approach, builds on top
of Parrot [20], and runs consensus for each system call, to

implement a DPS for SMR. Alchieri et al. [6] suggest run-
ning requests touching disjoint memory shards on separate
dedicated threads, while cross-shard ones need to synchro-
nize using barriers, which suffers from P2. Kuafu [30] and
CBASE [39] construct dependency graphs, but fail to provide
an efficient and high-performance implementation without
the focus on 𝜇𝑠-scale datacenter services. Sparkle [43], Har-
mony [40], and Spectrum [15] process transactions specula-
tively and abort in case of conflicts. Meerkat [67] proposes
zero-coordination principle to avoid inter-core and cross-
replica synchronization for scalable transactions. DORADD
conforms to this principle and shows high efficiency for
deterministic systems.
Programming languages: Deterministic parallel Java [34]
provides deterministic-by-default semantics using compile-
time checking. Behaviour-oriented Concurrency (BoC) [13]
is a new concurrency paradigm that forgoes concurrent mu-
tation and ensures exclusive access to the underlying re-
sources. Despite not targeting DPS, BoC implements a simi-
lar programming model to DORADD, in which developers
are expected to bundle the expected memory accesses with
the units of execution.
Non-deterministic 𝜇𝑠-scale RPC scheduling: Going be-
yond deterministic parallel execution, the single-dispatcher
multi-worker design has been widely adopted in 𝜇𝑠-scale
RPC scheduling. Several systems [21, 31, 35, 59] use an asym-
metric single-dispatcher system, similar to DORADD, yet
they do so to implement better RPC scheduling policies
and improve tail latency. Unlike DORADD though, these
works use a single-threaded dispatcher that could become
a throughput bottleneck. ZygOS [60], a symmetric, non-
preemptive system uses work-stealing similar to DORADD,
to approximate a single queue.

8 Conclusion
DORADD is a high-performance deterministic parallel run-
time for modern datacenter services. It employs an efficient
scheduling scheme which decouples dispatching, i.e., deter-
ministically constructing dependency graphs, from work-
conserving and synchronization-free execution. It leverages
core pipelining to scale the single-dispatcher throughput.
DORADD achieves much better latency and higher through-
put than state-of-the-art DPS, and induces no performance
overhead compared to state-of-the-art non-deterministic
RPC schedulers.

Acknowledgments
We thank the anonymous reviewers, the members of the
LSDS group, Adrien Ghosn, Ashvin Goel, Diyu Zhou, and
James Larus for their detailed and valuable feedback. We also
thank Joshua Fried for helping us setup and run Caladan.
We appreciate CloudLab [24] for providing the experiment
platform. This work is supported by a gift fromMysten Labs.

293



DORADD: Deterministic Parallel Execution in the Era of Microsecond-Scale Computing PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA

References
[1] 2023. The Rise of REST API. https://blog.restcase.com/the-rise-of-

rest-api/. Accessed: May 14, 2024.
[2] 2023. TPC-C Benchmark. https://www.tpc.org/tpcc/. Accessed:

December 2, 2023.
[3] 2024. Volt Active Data. https://www.voltactivedata.com/. Accessed:

August 10, 2024.
[4] Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra J.

Marathe, Athanasios Xygkis, and Igor Zablotchi. 2020. Microsecond
Consensus for Microsecond Applications. In OSDI. USENIX Associa-
tion, 599–616.

[5] Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, AntoineMu-
rat, Athanasios Xygkis, and Igor Zablotchi. 2023. uBFT: Microsecond-
Scale BFT usingDisaggregatedMemory. InASPLOS (2). ACM, 862–877.

[6] Eduardo Alchieri, Fernando Dotti, and Fernando Pedone. 2018. Early
scheduling in parallel state machine replication. In Proceedings of the
ACM Symposium on Cloud Computing. 82–94.

[7] Amittai Aviram, Shu-Chun Weng, Sen Hu, and Bryan Ford. 2010. Ef-
ficient System-Enforced Deterministic Parallelism. In OSDI. USENIX
Association, 193–206.

[8] Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy Ran-
ganathan. 2017. Attack of the killer microseconds. Commun. ACM 60,
4 (2017), 48–54.

[9] AdamBelay, George Prekas, Ana Klimovic, Samuel Grossman, Christos
Kozyrakis, and Edouard Bugnion. 2014. {IX}: a protected dataplane
operating system for high throughput and low latency. In 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
14). 49–65.

[10] Tom Bergan, Nicholas Hunt, Luis Ceze, and Steven D Gribble. 2010.
Deterministic Process Groups in {dOS}. In 9th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 10).

[11] Nils Boeschen and Carsten Binnig. 2022. GaccO-A GPU-accelerated
OLTP DBMS. In Proceedings of the 2022 International Conference on
Management of Data. 1003–1016.

[12] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault
Tolerance. In OSDI. USENIX Association, 173–186.

[13] Luke Cheeseman, Matthew J. Parkinson, Sylvan Clebsch, Marios Ko-
gias, Sophia Drossopoulou, David Chisnall, Tobias Wrigstad, and Paul
Liétar. 2023. When Concurrency Matters: Behaviour-Oriented Concur-
rency. Proc. ACM Program. Lang. 7, OOPSLA2, Article 276 (oct 2023),
30 pages. https://doi.org/10.1145/3622852

[14] Chen Chen, Xingbo Wu, Wenshao Zhong, and Jakob Eriksson. 2024.
Fast Abort-Freedom for Deterministic Transactions. In 2024 IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS). IEEE,
692–704.

[15] Zhihao Chen, Tianji Yang, Yixiao Zheng, Zhao Zhang, Cheqing Jin,
and Aoying Zhou. 2024. Spectrum: Speedy and Strictly-Deterministic
Smart Contract Transactions for Blockchain Ledgers. Proceedings of
the VLDB Endowment 17, 10 (2024), 2541–2554.

[16] Yuan Hsi Chou, Christopher Ng, Shaylin Cattell, Jeremy Intan,
Matthew D Sinclair, Joseph Devietti, Timothy G Rogers, and Tor M
Aamodt. 2020. Deterministic atomic buffering. In 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 981–995.

[17] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking cloud serving systems with
YCSB. In Proceedings of the 1st ACM symposium on Cloud computing.
143–154.

[18] James Cowling and Barbara Liskov. 2012. Granola:{Low-Overhead}
distributed transaction coordination. In 2012 USENIX Annual Technical
Conference (USENIX ATC 12). 223–235.

[19] Heming Cui, Rui Gu, Cheng Liu, Tianyu Chen, and Junfeng Yang. 2015.
Paxos made transparent. In SOSP. ACM, 105–120.

[20] Heming Cui, Jirí Simsa, Yi-Hong Lin, Hao Li, Ben Blum, Xinan Xu,
Junfeng Yang, Garth A. Gibson, and Randal E. Bryant. 2013. Parrot:
a practical runtime for deterministic, stable, and reliable threads. In
SOSP. ACM, 388–405.

[21] Henri Maxime Demoulin, Joshua Fried, Isaac Pedisich, Marios Kogias,
Boon Thau Loo, Linh Thi Xuan Phan, and Irene Zhang. 2021. When
idling is ideal: Optimizing tail-latency for heavy-tailed datacenter
workloads with perséphone. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles. 621–637.

[22] Joseph Devietti, Brandon Lucia, Luis Ceze, andMark Oskin. 2009. DMP:
Deterministic shared memory multiprocessing. In Proceedings of the
14th international conference on Architectural support for programming
languages and operating systems. 85–96.

[23] Joseph Devietti, Jacob Nelson, Tom Bergan, Luis Ceze, and Dan Gross-
man. 2011. RCDC: a relaxed consistency deterministic computer. ACM
SIGARCH Computer Architecture News 39, 1 (2011), 67–78.

[24] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,
Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson,
Kirk Webb, et al. 2019. The design and operation of {CloudLab}. In
2019 USENIX annual technical conference (USENIX ATC 19). 1–14.

[25] Jose M Faleiro and Daniel J Abadi. 2015. Rethinking serializable multi-
version concurrency control. , 1190–1201 pages.

[26] Jose M Faleiro, Daniel J Abadi, and Joseph M Hellerstein. 2017. High
performance transactions via early write visibility.

[27] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay. 2020.
Caladan: Mitigating interference at microsecond timescales. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20). 281–297.

[28] Rati Gelashvili, Alexander Spiegelman, Zhuolun Xiang, George
Danezis, Zekun Li, Dahlia Malkhi, Yu Xia, and Runtian Zhou. 2023.
Block-STM: Scaling Blockchain Execution by Turning Ordering Curse
to a Performance Blessing. In PPoPP. ACM, 232–244.

[29] Zhenyu Guo, Chuntao Hong, Mao Yang, Dong Zhou, Lidong Zhou,
and Li Zhuang. 2014. Rex: replication at the speed of multi-core. In
EuroSys. ACM, 11:1–11:14.

[30] Chuntao Hong, Dong Zhou, Mao Yang, Carbo Kuo, Lintao Zhang,
and Lidong Zhou. 2013. KuaFu: Closing the parallelism gap in data-
base replication. In 2013 IEEE 29th International Conference on Data
Engineering (ICDE). IEEE, 1186–1195.

[31] Rishabh Iyer, Musa Unal, Marios Kogias, and George Candea. 2023.
Achieving Microsecond-Scale Tail Latency Efficiently with Approx-
imate Optimal Scheduling. In Proceedings of the 29th Symposium on
Operating Systems Principles. 466–481.

[32] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert
Soulé, Changhoon Kim, and Ion Stoica. 2018. NetChain: Scale-Free
Sub-RTT Coordination. In NSDI. USENIX Association, 35–49.

[33] Hadi Jooybar, Wilson WL Fung, Mike O’Connor, Joseph Devietti, and
Tor M Aamodt. 2013. GPUDet: a deterministic GPU architecture. In
Proceedings of the eighteenth international conference on Architectural
support for programming languages and operating systems. 1–12.

[34] Robert L. Bocchino Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve,
Stephen Heumann, Rakesh Komuravelli, Jeffrey Overbey, Patrick Sim-
mons, Hyojin Sung, and Mohsen Vakilian. 2009. A type and effect
system for deterministic parallel Java. In OOPSLA. ACM, 97–116.

[35] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay,
David Mazières, and Christos Kozyrakis. 2019. Shinjuku: Preemptive
Scheduling for {𝜇second-scale} Tail Latency. In 16th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 19).
345–360.

[36] Manos Kapritsos, Yang Wang, Vivien Quema, Allen Clement, Lorenzo
Alvisi, and Mike Dahlin. 2012. All about eve:{Execute-Verify} replica-
tion for {Multi-Core} servers. In 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 12). 237–250.

294

https://blog.restcase.com/the-rise-of-rest-api/
https://blog.restcase.com/the-rise-of-rest-api/
https://www.tpc.org/tpcc/
https://www.voltactivedata.com/
https://doi.org/10.1145/3622852


PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA Liu et al.

[37] Kangnyeon Kim, Tianzheng Wang, Ryan Johnson, and Ippokratis Pan-
dis. 2016. Ermia: Fast memory-optimized database system for hetero-
geneous workloads. In Proceedings of the 2016 International Conference
on Management of Data. 1675–1687.

[38] Marios Kogias and Edouard Bugnion. 2020. HovercRaft: achieving scal-
ability and fault-tolerance for microsecond-scale datacenter services.
In EuroSys. ACM, 25:1–25:17.

[39] Ramakrishna Kotla and Michael Dahlin. 2004. High throughput Byzan-
tine fault tolerance. In International Conference on Dependable Systems
and Networks, 2004. IEEE, 575–584.

[40] Ziliang Lai, Chris Liu, and Eric Lo. 2023. When private blockchain
meets deterministic database. Proceedings of the ACM on Management
of Data 1, 1 (2023), 1–28.

[41] Leslie Lamport. 2001. Paxos made simple. ACM SIGACT News (Dis-
tributed Computing Column) 32, 4 (Whole Number 121, December 2001)
(2001), 51–58.

[42] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan
R. K. Ports. 2016. Just Say NO to Paxos Overhead: Replacing Consensus
with Network Ordering. In OSDI. USENIX Association, 467–483.

[43] Zhongmiao Li, Paolo Romano, and Peter Van Roy. 2019. Sparkle:
Speculative deterministic concurrency control for partially replicated
transactional stores. In 2019 49th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN). IEEE, 164–175.

[44] Yu-Shan Lin, Shao-Kan Pi, Meng-Kai Liao, Ching Tsai, Aaron Elmore,
and Shan-Hung Wu. 2019. MgCrab: transaction crabbing for live
migration in deterministic database systems. Proceedings of the VLDB
Endowment 12, 5 (2019), 597–610.

[45] Yu-Shan Lin, Ching Tsai, Tz-Yu Lin, Yun-Sheng Chang, and Shan-
Hung Wu. 2021. Don’t Look Back, Look into the Future: Prescient
Data Partitioning and Migration for Deterministic Database Systems.
In Proceedings of the 2021 International Conference on Management of
Data. 1156–1168.

[46] Tongping Liu, Charlie Curtsinger, and EmeryD. Berger. 2011. Dthreads:
efficient deterministic multithreading. In SOSP. ACM, 327–336.

[47] Kai Lu, Xu Zhou, Tom Bergan, and Xiaoping Wang. 2014. Efficient
deterministic multithreading without global barriers. ACM SIGPLAN
Notices 49, 8 (2014), 287–300.

[48] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. 2020. Aria: a fast
and practical deterministic OLTP database.

[49] Timothy Merrifield, Joseph Devietti, and Jakob Eriksson. 2015. High-
performance determinism with total store order consistency. In Pro-
ceedings of the Tenth European Conference on Computer Systems. 1–13.

[50] Timothy Merrifield, Sepideh Roghanchi, Joseph Devietti, and Jakob
Eriksson. 2019. Lazy determinism for faster deterministic multithread-
ing. In Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems. 879–891.

[51] Microsoft. 2023. verona-rt: The runtime for the Verona project. https:
//github.com/microsoft/verona-rt. Accessed: December 2, 2023.

[52] Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and Jinyang Li. 2014.
Extracting more concurrency from distributed transactions. In 11th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 14). 479–494.

[53] Shuai Mu, Lamont Nelson, Wyatt Lloyd, and Jinyang Li. 2016. Consoli-
dating concurrency control and consensus for commits under conflicts.
In 12th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 16). 517–532.

[54] Omar S Navarro Leija, Kelly Shiptoski, Ryan G Scott, Baojun Wang,
Nicholas Renner, Ryan R Newton, and Joseph Devietti. 2020. Repro-
ducible containers. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and
Operating Systems. 167–182.

[55] Cuong DT Nguyen, Johann K Miller, and Daniel J Abadi. 2023. Detock:
High Performance Multi-region Transactions at Scale. Proceedings of

the ACM on Management of Data 1, 2 (2023), 1–27.
[56] National Academies of Sciences, Policy, Global Affairs, Board on Re-

search Data, Information, Division on Engineering, Physical Sciences,
Committee on Applied, Theoretical Statistics, Board on Mathemati-
cal Sciences, et al. 2019. Reproducibility and replicability in science.
National Academies Press.

[57] Marek Olszewski, Jason Ansel, and Saman Amarasinghe. 2009. Kendo:
efficient deterministic multithreading in software. In Proceedings of the
14th international conference on Architectural support for programming
languages and operating systems. 97–108.

[58] Diego Ongaro and John K. Ousterhout. 2014. In Search of an Under-
standable Consensus Algorithm. In USENIX Annual Technical Confer-
ence. USENIX Association, 305–319.

[59] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and
Hari Balakrishnan. 2019. Shenango: Achieving high {CPU} efficiency
for latency-sensitive datacenter workloads. In 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19). 361–378.

[60] George Prekas, Marios Kogias, and Edouard Bugnion. 2017. Zygos:
Achieving low tail latency for microsecond-scale networked tasks. In
Proceedings of the 26th Symposium on Operating Systems Principles.
325–341.

[61] Alex Pshenichkin. 2024. So you think you want to write a deterministic
hypervisor? https://antithesis.com/blog/deterministic_hypervisor/.
Accessed: May 14, 2024.

[62] Thamir M Qadah and Mohammad Sadoghi. 2018. Quecc: A queue-
oriented, control-free concurrency architecture. In Proceedings of the
19th International Middleware Conference. 13–25.

[63] Dai Qin, Angela Demke Brown, and Ashvin Goel. 2021. Caracal:
Contention management with deterministic concurrency control. In
Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles. 180–194.

[64] Mike Qin, Zhiqi He, Tudor Brindus, and Mohammad Nasirifar. 2021.
felis GitHub Repository. https://github.com/uoft-felis/felis. Accessed:
December 2, 2023.

[65] Kun Ren, Jose M Faleiro, and Daniel J Abadi. 2016. Design principles
for scaling multi-core oltp under high contention. In Proceedings of
the 2016 International Conference on Management of Data. 1583–1598.

[66] M Aater Suleman, Moinuddin K Qureshi, Khubaib, and Yale N Patt.
2010. Feedback-directed pipeline parallelism. In Proceedings of the
19th international conference on Parallel architectures and compilation
techniques. 147–156.

[67] Adriana Szekeres, Michael Whittaker, Jialin Li, Naveen Kr Sharma,
Arvind Krishnamurthy, Dan RK Ports, and Irene Zhang. 2020.
Meerkat: Multicore-scalable replicated transactions following the zero-
coordination principle. In Proceedings of the Fifteenth European Con-
ference on Computer Systems. 1–14.

[68] The MystenLabs Team. 2023. The sui smart contracts platform. https:
//docs.sui.io/paper/sui.pdf. Accessed: May 14, 2024.

[69] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren,
Philip Shao, and Daniel J Abadi. 2012. Calvin: fast distributed transac-
tions for partitioned database systems. In Proceedings of the 2012 ACM
SIGMOD international conference on management of data. 1–12.

[70] Qing Wang, Youyou Lu, Jing Wang, and Jiwu Shu. 2023. Replicating
Persistent Memory Key-Value Stores with Efficient RDMAAbstraction.
In OSDI. USENIX Association, 441–459.

[71] Yu Xia, Xiangyao Yu, Andrew Pavlo, and Srinivas Devadas. 2020. Tau-
rus: lightweight parallel logging for in-memory database management
systems. (2020).

[72] Anatoly Yakovenko. 2018. Solana: A new architecture for a high
performance blockchain.

[73] Yuan Yuan, Kaibo Wang, Rubao Lee, Xiaoning Ding, Jing Xing, Spyros
Blanas, and Xiaodong Zhang. 2016. Bcc: Reducing false aborts in
optimistic concurrency control with low cost for in-memory databases.
Proceedings of the VLDB Endowment 9, 6 (2016), 504–515.

295

https://github.com/microsoft/verona-rt
https://github.com/microsoft/verona-rt
https://antithesis.com/blog/deterministic_hypervisor/
https://github.com/uoft-felis/felis
https://docs.sui.io/paper/sui.pdf
https://docs.sui.io/paper/sui.pdf


DORADD: Deterministic Parallel Execution in the Era of Microsecond-Scale Computing PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA

[74] Xinjing Zhou, Xiangyao Yu, Goetz Graefe, and Michael Stonebraker.
2022. Lotus: scalable multi-partition transactions on single-threaded
partitioned databases. Proceedings of the VLDB Endowment 15, 11
(2022), 2939–2952.

A Artifact
DORADD artifact is available at https://zenodo.org/records/
14607089 and https://github.com/doradd-rt/ppopp-artifact.
It includes the source code, detailed instructions, and scripts
necessary for reproducing the experiments presented in the
evaluation section. The code has been tested primarily on
Ubuntu 22.04. To fully reproduce the results, two testbeds
are required.

A.1 Testbeds
Single-node experiments (Figures 6, 9, and 10):
• These experiments should be run on a local testbed equipped
with an Intel Xeon Gold 5318N CPU (24 cores) and 128GB
DRAM.

Multi-node experiments (Figures 7 and 8):
• These experiments are designed to run on CloudLab using
three d6515 nodes.

• We provide a CloudLab experiment profile to facilitate the
setup of the machines.

• You can follow this guide to set up CloudLab.
• Please reserve these nodes in advance, as they may not
always be available.

A.2 Experiments Summary
Estimated time to run all experiments: 5h – 6h. Approximate
human time required: 1h. We suggest using tmux to track
the experiment progress.

Instructions Testbed Human/Machine time
Figure-5.md Local 5 min/2h
Figure-6.md CloudLab 10 min/2h
Figure-7.md CloudLab 10 min/20 min
Figure-8.md Local 5 min/30 min
Figure-9.md Local 5 min/5 min

Received 16 August 2024; accepted 11 November 2024

296

https://zenodo.org/records/14607089
https://zenodo.org/records/14607089
https://github.com/doradd-rt/ppopp-artifact
https://github.com/doradd-rt/doradd-cloudlab-profile
https://github.com/doradd-rt/ppopp-artifact/blob/main/doradd-cloudlab-instructions.pdf
https://github.com/doradd-rt/ppopp-artifact/blob/main/Figure-5.md
https://github.com/doradd-rt/ppopp-artifact/blob/main/Figure-6.md
https://github.com/doradd-rt/ppopp-artifact/blob/main/Figure-7.md
https://github.com/doradd-rt/ppopp-artifact/blob/main/Figure-8.md
https://github.com/doradd-rt/ppopp-artifact/blob/main/Figure-9.md

	Abstract
	1 Introduction
	2 Background and Motivation
	3 The DORADD Design
	3.1 High-level System Design
	3.2 Programming Model
	3.3 DORADD Scheduling Scheme
	3.4 Scalable Pipelined Dispatcher

	4 Implementation
	5 Evaluation
	5.1 Performance Comparison with other DPS
	5.2 The Cost of Determinism
	5.3 End-to-End Use Case: Replication
	5.4 DORADD Design Analysis

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Artifact
	A.1 Testbeds
	A.2 Experiments Summary




